- "

GALILEOQO Project.
WORKSTATION SOFTWARE SYSTEM
Architecture Design Document

Technical Report #2

14. Balestra, 1P. Marcucei, I2F. Pasian,
IM. Pucillo, 'R. Smareglia, 'C. Vuerli

L TNG Project, Astronomical Observatory of Trieste
2 STECF/ESO, Garching

December 1991

Pubbl. Osservatorio Astronomico di Trieste n. 1428

Abstract

This document contains the Architectural Design of the Workstation Software
System, which, together with the Telescope Software System, is part of the GALILEO
Telescope Control System. Special emphasys is put both on general issues like software
standards, portability and modularity, and on more particular ones as remote control
capabilities and fault tolerance. The document is divided into two main sections : the
first describes the environment needed for the WSS to operate, including all off-line
utilities dedicated to the housekeeping of the characteristics files. The other one concerns
the structure of the on-line software, i.¢. the monitoring processes and the user interface.

1-INTRODUCTION

The general structure of TCS has been already described elsewhere [1]. It is sketched
in fig. 1 with its main components putin clear evidence, in order to clarify the relationship
between hardware and software structure of TCS, which will be described later on. The
hardware structure is composed of a set of microprocessor systems based on the VME
standard, containing the processing power and the hardware needed to operate the
telescope subsystems and the instruments as well, and by a set of last generation, UNIX
based, workstations. All these systems are connected by an Ethernet network with the
TCP/IP protocol for commands and status exchange, while a different kind of
connections, still to be defined, will guarantee the science data acquisition.

As already noted two software environments exist in the Galileo Telescope Control
System (TCS) : the first, the Telescope Software System (TSS), will embody all the
microprocessor systems, and has been thoroughly described in [2]. The second one, the
Workstation Software System (WSS), will be given the task of monitoring the TSS
activities and of interfacing the users with it. Moreover it will provide the TCS with some
basic services, not directly related with the telescope control, such as science data
archiving, observations data base consulting and off-line data processing.

2 - GENERAL CONCEPTS

The guidelines followed in the design of the general structure of WSS, have been
carefully chosen in order to lead to a flexible and modular structure, having in mind, as
far as it’s possible, the future unavoidable changes and enhancements to the structure
itself, both by the points of view of the hardware platforms and of the software tools
used.

Three points have been dedicated the major part of the design effort. The first point
has been the decision to design all the WSS software as a table-driven one. No data are
hardwired within the code. All the data needed by WSS processes are fed to them at
startup through disk resident tables. They are maintained with off-line dedicated editors
which eventually produce sets of files in a format suitable for both WSS and TSS. Such

tables will include the definitions of parameters, commands and any other quantity used
by both systems.

Communications, both intranodes and internode, were the second point, for they are
the backbone over which the whole system works. A suitable, fault tolerant
communication system has been devised in order to guarantee secure TCS operations
even in the case of a workstation failure. A similar mechanism is also provided by TSS.

A third point has also been considered worth an accurate design : the overall
organization of the static (definitions) and dynamic (status information) data relevant to
TCS operations into a data structure with homogeneous access methods, both direct and
indexed, where all the WSS tasks will read or write the data of their interest during TCS
operations. This structure can be considered as a simple Telescope Data Base (TDB),
and will be created and maintained by a dedicated task.

In the following paragraphs a complete description of those concepts will be given,
together with the architecture of the software of concern.

— AZ | MIM3 | — INSTRT —
— B | 1w | wm e s
g =
—| DRTA | ADPA | %
— DRTE | ADPB] g
-
g
=]
ws E
Wws Telescope Instrument
SERVICE Control Control
System System
BRIDGE
telescope natwork RB:I?DfO
Network
ws
Ramota
Observing
remota
network

Figure 1: Telescope Control System

2.1 - TCS Structure and Naming Conventions

As can be seen in fig. 1, the telescope network will connect a set of nodes of two
kinds: VME systems operating directly on the telescope subsystems and on the
instruments, and workstation systems which are dedicated to interface the operators to
the telescope and to monitor its activity and status.

Each VME system contains a set of tasks, or groups of logically correlated tasks,
called units. Each unit controls a particular function of the subsystem through a set of
parameters, and is in turn controlled through a set of commands. In the workstations case
the same structure can be recognized substituting the concept of UNIX process to that
of VME task.

In order to have the WSS working properly, a suitable naming convention has been
defined, which maps directly to the TCS structure. The devised solution has been to
introduce a hierarchical organization reproducing the physical structure of TCS, and to
give each component a name built up by one to three fields, specifying the full path
needed toreach it inside this structure. The first field will contain the name of the system,
the second the name of the unit and the third the name of the item. The layout of the full
name will thus be as follows :

<gystermn>_<unit>_<iterm>

where:

<system> = four characters identifier of the TCS system to which the item be- '
longs (e.g. VMAZ : azimuth control VME)

<unit> = three characters identifier of the the task (or group of tasks) enabled
to act on the item (e.g. MPA : motors power amplifiers control task)

<item> = six characters self explaining acronym of the item itself {(e.g.
MT1CUR : motor 1 current)

The previous example leads to the following name :
VMAZ _MPA_MTICUR

Obviously systems will have their name formed only by the first field, while units
names will contain the first two fields. This approach allows the WSS to address correctly
each item in the TCS, should it belong to the local system or to a remote one, and lends
itself naturally to remote control and to remote observing.

The same convention has been used to build the names of the definition tables for
the WSS components, as will be described in the following paragraph.

2.2 - Definition Files

As reported before, all the components of the WSS software are built as table driven
modules. At startup each module will read its data either from the on-line TDB, built up
during the initialization phase from the on-disk definition files, or directly from its private

M <ANUN> T <NW2gsAs>

AP <UN>TENWPgSAS>

[

ued-<AHUN> < NWRGGAE>

ud<pun> "< NWosRs>

[

JOTH S UN> T <N W 8RS >

JosUr<|uN>T<NWqeRs>

Jod-epnun>"<NW21sRs>

Jods<pun>"<NWoq8Ra>

Mipr<Nwzgsle>

ued-<NupsERs>

Jonr<Niliaqshs>

MIP < IUN ST < | Mg shs>

M US> T LUSSAS>

]

ued < U< pu2gskss

ued <HUN> "< | WageRs >

Lo SNIUN> < Wi shs >,

JOoUr<HUN> "< Wq5hs >

u

Jod cppapun> "< ue1sRs>

Jad<pun>"cusks>

Mg <juishe>

ued <|lqshe>

...

Jorv<usqefs>

Jpsuiojss

7 oA

| o)

0 A9

Figure 2: Characteristic tables organization

files. All those files are created and maintained by means of a set of off-line utilities
which include a context-sensitive table editor to maintain the definition tables, an
interactive panels editor for interaction panels and a graphic panels editor for graphic
panels. Besides there are some programs which allow to convert definition tables from
an old format to a new one, without the burden of having to rewrite them when a change
of their structure is required by an upgrade in the software.

Tables, graphic panels and interaction panels contain all the information needed by
WSS processes to interact with TSS and with the user. They are organized in a tree-like
structure as reported in fig. 2. The names of the files follow the naming convention
already discussed in par. 2.1, so that each file can be easily recovered through the names
of the system, and the unit, to which it pertains,

The definitions tables tree is as follows:

root level : general structure of TCS, contains one file with the definitions for
all the systems in the TNG network; the file name is defined in the environ-
ment : systems.scf

1st level : units definitions, contain the definitions of the units (tasks or pro-
cesses) of each system; file names are derived from system names found in
the previous file : <system>.ucf

2nd level : contains the definitions of the parameters used by each unit, and
of the microcommands accepted by them; file names are derived combining
the name of each system with the name of its units found in ".ucf" files: <sys-
tem>_<unit>.pcf for parameters, <system>_<unit>mccf for microcommands

Both at the 1st and 2nd level the definition files for the graphic and interaction panels
may be included; their names follow the same rules described previously:

<system>.pan or <system>_<unit>.pan for interactive panel

<system>,drw or <system>_<unit>.drw for graphic panels

2.2.1 - Off-line Files Maintenance Tools

There are two classes of off-line tools; table editors and table converters. Table
editors allow the user to create and edit definition tables and interactive or graphic panels,
while table converters allow the conversion between different formats of table sets.

The TNG tables take their internal structure (the current one is described in
paragraph 3.3) from a definition file called "dbms.src”, written in a metalanguage that
makes use of a subset of C structures.

Here is and example taken from the current definition file for the root level SCF
(System Characteristic File) structure:

/* TNG - dbms.src */f
/* Source file for data records definition */
/* Creation: PM-QOAT 180891 */
o e e e e e e e */
/* enter "/lib/cpp dbms.src dbms.cfg" to */
/* build the definition file. */
JF e e —————— x/

#define ACRONYMLEN 16
#define MAXCOEFF 5
#define MAXOPER 5
#define DESCRLEN 44
fidefine PATHLEN 44

/* ———- Systems definition file -——— */

scf: |
nodenum: int;0;S8ystem id;
nodename : char{DESCRLEN] ; NULL; System description;
acCronym: char[ACRONYMLEN] ; NULL; System acronym;
dbcode: long; 0;NULL;
arpa_node: char[l6];NULL; Internet address;
byte sex: booclean; 0; Swap bytes;
send data: boolean; 0;Send TM+Data;
tm_period: int;1;Telemetry refresh rate;
ncode: int;0;Number of code files to send;
type: chaxi4};TCS;System type (TCS,ICS,VAR);
protection: int;0;Protection level;
havepanel.: boolean; 0;Interaction panel;
havedrawing: boolean; 0;Graphic panel;
firstqueue: int;0;VME’s first queue index;

}

As we can see, there are a "define” section and a "typedef” section. The syntax of
the first is just like C, while the second one deserves a little description.

On the first line we find the name of the structure we are defining, followed by a
colon and an open bracket. The other lines describe every field needed by the structure,
divided in four parts:

NAME

| TYPE

I ! DEFAULT

| | | DESCRIPTION
| | 1

nodenum: int;0;System id;
where :

NAME is the field variable name;
TYPE is the field variable type, choosen among a set of 11 types:

INT four byte integer;
LONG four byte long integer;

FLOAT four byte float;
BOOLEAN True or False;

CHAR array of char;

INTARR array of INT;
LONGARR array of LONG;
FLOATARR array of FLOAT;
CHARARR array of CHAR;
BOOLARR array of BOOLEAN;
INTDARR double array of INT;
LONGDARR double array of LONG;
FLOATDARR double array of FLOAT;

DEFAULT is the default value; NULL means no default;

DESCRIPTION is the description of the field as will be displayed in the table
editor; NULL means the item is for internal use.
A closing bracket ends the definition of the structure.

Using a utility called "makeinc", dbms.src is converted in dbms.cfg. At the same
time all the defines are resolved and a set of include files is created.

Here is an example of the dbms.cfg structure and of the correspondent include file:

dbms.cfg

scf
{
nodenum: int; 0;System id;
nodename : char([44];NULL; System description;
acronym: char{[16];NULL; System acronym;
dbecode: long; 0;NULL;
arpa_node: char[16] ;NULL; Internet address;
byte_sex: boclean; 0;Swap bytes;
send data: boolean; 0;Send TMtData;
tm period: int;1;Telemetry refresh rate;
ncode: int; 0;Number of code files to send;
type: char([4];TCS;System type (TCS,ICS,VAR);
protection: int;0;Protection level;
havepanel: boolean; 0;Interaction panel;
havedrawing: boolean; 0;Graphic panel;
firstqueue: int;0;VME’s first queue index;

}

scf.h include file

/*
** Tnelude f£ile for SCF class type
*% Creatiom: 06.12.91. */

typedef struct
{

int nodenum; /* System id */

char nodename [44] ; /* System description */

char acronym[i6]; /* System acronym */

long dbcode; /* *%% INTERNAL USE ONLY *#*% %/
char arpa_node{16]; /* Internet address */

int byte sex; /* Swap bytes */

int send data: /* Send TM+Data */

int tm periocd; /* Telemetry refresh rate */
int ncode:; /* Number of code files to send */
char typeld]; /* System type (TCS,ICS,VAR) */
int protection; /* Protection level */

int havepanel; /* Interaction panel */

int havedrawing; /* Graphic panel */

int firstqueue; /* VME’s first queue index */

} SCFREC;

The file dbms.cfg is used by table editors and by the WSINIT process to store and
retrieve data from the definition tables. A dedicated library (dblib) is provided to allow
programs to access transparently these capabilities.

There are three off-line table editors. One of them is the "Table Editor", a
context-sensitive editor, which, starting by a file name, can detect its type and open an
editing panel suited to the file type.

The other two editors are devoted to the interactive and graphic panels. They are
WYSIWYG programs that allow the programmer to rapidly build an interactive or
graphic panel making use of buttons, menus and other widgets.

2.3 - Communications

The communications mechanisms are based on two UNIX tools: sysV messages and
BSD sockets. The former are restricted to the use on a single computer, while the latter
use protocols (e.g. tcp/ip) to communicate on computer networks.

SysV messages are used for communications between processes in the same node.
Each unit at startup calls an "init communications” function, which in turn opens his own
message queue using its process identifier (PID) as an access key, and writes the resulting
queue identifierinto the TDB. When the unitneeds to send a message, the "send" function
will get the target queue id from TDB and, at the same time, delivers the signal matching
the priority of the message. The "read” function is a signal handler that reads the message
from its queue and performs the action specified by the user.

Communications between processes on different nodes are realized using BSD
sockets with Internet protocols. Sockets are either of SOCK_DGRAM (udp protocol) or
SOCK_STREAM (tcp protocol) type. Sockets using Internet are able to manage
communications also on wide area networks, and will allow both remote control and
remote observing as a natural and straightforward extension.

2.3.1 - Workstations Communication System

The communication system is based on the concept that each unit can reach every
other unit without bothering about its location, either local or remote, depending on the
system configuration. The sender unit must fill a message header specifying its acronym,
the target acronym, the type of the message, its priority and its size. The library function
used to send the message analyses the system part of the target acronym, determining if
itis local or remote: if the address is local, sysV messages are used to reach the specified
unit; else, still using sysV calls, the message is forwarded to WSCOMM process.

The WSCOMM process takes care of all the TCP/IP connections with other systems
orunits on remote workstations. When a message with aremote target address isreceived,
WSCOMM finds the Internet address of the required remote system and performs the
send operation. On the remote system, the peer WSCOMM will get the message; if the
calling unit is allowed to perform the requested operation, WSCOMM will provide to
forward it to the specified unit.

The TCP/IP connection system is totally dynamic. Each time a workstation enters
the network its WSCOMM process staris a connection procedure with the other
workstations already present, using UDP. First a presence message is broadcasted over
the network. Then, after a handshake phase about the respective roles, the workstation
establishes its TCP connection mode, either as a server or a client. Such a system is
absolutely open and allows for new connections even at run time,

The priority of the messages, either alarms or normal messages, is linked to a signal
management procedure: every time a message is sent, a signal is also delivered to the
receiver unit; the type of the signal (SIGUSR1 or SIGUSR?2) depends on the priority of
the message. Alarm priority messages will always be read before normal priority ones.
The user is free to specify the action to be performed when a message is received; the
interface with sysV signals and messages is provided by a dedicated library.

A simple scheme of fault tolerance is also obtained from a careful use of the
communication system. Each workstation broadcasts periodically over the network a
"heartbeat” signal, using the UDP protocol. These signals are monitored by all other
workstations and used to maintain a knowledge of the network current configuration.
Should a workstation fail, it stops sending the signal. The other systems recognize the
new situation, and start a transaction phase to choose the new workstation elegible to
substitute the one which has failed. After this phase the chosen workstation takes over
the identity of the failed one and tries to connect with the concerned VMES. Then, if the
mechanism is successful, operations can resume their normal behaviour.

2.3.2 - VME Communication System

The scheme of the communications between VMEs and workstations is slightly
different from the inter-workstation one. Considerations about efficiency and reliability
led to a separate environment, even if based on the same concepts. The protocol used is
TCP/IP, and the VMEs are always servers, while workstations are always clients. This
was decided in order to allow maximum flexibility in the system configuration, i.e.

should a workstation fail, it is up to the workstation system to decide alternate
connections to VMEs.

VME failure detection instead is exploited on a time-out base. Like in the
workstation case, a heartbeat signal is sent to each attached VME by its controlling
workstation. The protocol used is again TCP/IP, owing to the fact that UDP is not
available under the operating system chosen for the VME systems. In case of a
workstation failure, the attached VMEs detect the failure and enter a safe state, waiting
for a new workstation to connect with them.

Sharecd Memowry

Housekeeping SCF Immediate queved
informations -
Immediate submitted |
SCF UcF Delayed queved E
UGk PCF Delayed submitted
PCF MCCF
MCCF Tables " 1 ==
B T E
PAN | ™
Tables
o
Hash table £
5
™
-2]
=
E
Segment 0 Segment 1 Segment 2

Figure 3: Telescope Data Base internal structure

2.4 - Data Base

The configuration tables of the whole TCS system, along with its dynamic status
are contained in a dedicated memory area of WSS, typically a set of shared memory
segments, accessible to all WSS processes. It is organized in a way suitable for both

indexed access and fast direct access, as well as for fast memory/disk swapping, in order
to increase efficiency of both on-line operations and off-line maintenance.

The internal structure of this area (the Telescope Data Base, TDB) is reported in fig.
3. It contains a root segment, where all the access control structures are located, followed
by the static contents of the definition files read from the disk. A second segment contains
the dynamic counterpart of the first segment, e.g. the dynamically changing status
information related to the items defined in it. A third segment is allocated for some special
internal data structures, such as the queues of the commands to be sent to the TSS, the
time schedule table for the WSS watchdog process, and the telemetry log buffers.

The TDB is created by the initialization process during the TCS startup phase. It
reads the definition files starting from the root level and following the tree-like structure
already described. First of all an accurate computation of the size of all the three TDB
segments is carried on. Then the segments are created and the access structures are
prepared. These last contain some fixed information together with the address tables
which allow WSS processes to access TDB items by their name. This capability is
provided using a modified hashing algorithm, which has proved to be able to resolve the
collisions among different names with very little overhead.

Alibrary of dedicated routines is available to the WSS processes to make use of the
addressing capabilities of TDB. Its data can be accessed by their name, as reported before
or by their internal unique code. This solution allows each process to build internal lists
of address codes, obtained through the item names, in order to make accesses as fast as
possible, specially when the same items must be addressed repeatedly.

The detailed structure of the TDB is reported in appendix A as a set of C data
structures.

3 - WSS STRUCTURE AND ORGANIZATION

3.1 - General Structure

Seven tasks are foreseen to be entrusted to the WSS. A single process is devoted to
each of the main tasks. A special class of processes (ancillary processes, AP) which have
no direct interaction with the external environment is also provided, and is used to support
the main processes when table definitions are no more sufficient for their proper
operations. This structure is a tradeoff between the characteristics of the UNIX operating
system, and the needs of the WSS, The layout of this structure and the mutual interactions
among processes are reported in fig. 4, together with the data and/or command paths
to/from the TDB, the TSS and the internal message exchange facility.

3.2 - WSS Processes

The seven processes cover the following tasks : WSS initialization, user interface
including TSS commands sending and alarms management, telemetry data verification

o

WSDISP

WSINIT

WSWATCH

DIAE

i”/e 5\
Tl Message exchong® b

Figure 4: Workstation Software System layout

and TDB update, command execution verification, science data reception, science data
archiving, communications among workstations.

3.2.1 - Initialization (WSINIT)

The WSINIT process is responsible for the initialization of the whole WSS system.
As first step, WSINIT attaches the TDB if it already resides in the shared memory, left
there by a previous run of the WSS, and if it is consistent with the current definition files.
If this is not the case, WSINIT creates the TDB static section and loads it from the on-disk
definition files; creates the dynamic TDB section and initializes it; creates the queues
TDB section and initializes it; finally it starts all the local WSS processes as children
processes.

The mechanism used to build the WSS processes is the standard UNIX "fork-exec"
method: fork duplicates the calling (parent) process environment, then exec runs a new
image (child) in it. Due to the characteristics of these UNIX system routines, parent and
children are able to communicate with each other using any of the standard methods
provided by UNIX.

After these operations, WSINIT puts itself in a dormant state, waiting for the death
of any of the children processes, for a message from any of the children, or for a signal
from the WSDISP process requesting an operator initiated shutdown.

The recovery of a fault is based on this capability : an error status being detected by
WSINIT can suspend the WSS operations in a predictable way. This allows the system
to restart with minimal operator intervention, or even with no intervention at all, provided
that the other workstations and the TSS systems are also able to suspend their own
operations, and to wait for a restart signal.

In case of a complete WSS shutdown, WSINIT stops all the children processes; then
a flush on disk-resident files of the dynamic TDB section and the queues TDB section
is attempted. At next WSINIT startup the contents of these files will be loaded in the
correspondent TDB sections.

System shutdown can be considered a special case of an error, which leads the WSS
to a complete stop.

3.2.2 - User Interface (WSDISP)

The task of supervising all the interactions between the user and the TCS is taken
on by the WSDISP process. It is actually divided into four sections, each carrying on a
well defined and independent activity:

1) monitoring user inputs
ii) parsing, validating and sending command to TSS components

iif) displaying default or user requested sets of telemetry data, either in
numeric or graphic form

iv) managing alarms arriving from the TCS.

These tasks constitutes the User Interface (UIF), and will be described laterin section
4 in greater detail.

3.2.3 - Telemewry Verification (TMVER)

The reception and verification, as long as the storage in the TDB of the telemetry
data arriving from the TSS, is carried on by a dedicated task, TMVER, which connects
to the TSS components of concern at initialization time. After TMVER has been started,
all the connections, both for telemetry bulk data and for normal telemetry, with VME
systems related to the current workstation system (or systems) are done. Telemetry data

are received and written into TDB. If necessary, byte swap and data conversion are
performed before writing. Commands submission and execution messages are also
received on the telemetry channel. When a submission message is received, the command
of concern is seeked on the "issned commands" queue and is moved to the "submitted
commands" queue. An execution message causes the command to be removed from the.
"submitted commands" queue. The bulk data channel is used to receive telemetry data
ring buffers, which are used to contain telemetry data sampled by VME systems at a rate
higher than the normal, for special diagnostic purposes.

3.2.4 - Commands and Timeouts Verification (WSWATCH)

This process performs controls on submission and execution of commands sent to
VME systems . It checks periodically the microcommands queues, looking for
commands not yet submitted or executed in the due time. If such a condition is found, a
warning or alarm message is sent to the user through the interface of the system from
which the command has been sent.

3.2.5 - Communications among Workstations (WSCOMM)

All connections among workstations are managed by this process. The main tasks
performed are:

i) initialization and monitoring of network connections

ii) recovery of network failures

iii) sending and receiving messages to and from remote workstations
iv) database writing operations on remote request

The communication mechanism has already been described in greater detail in
section 2.3.1.

3.2.6 - Science Data Handling (DTINP, DTOUT)

Handling of the data from acquisition to storage on a temporary magnetic disk area
is performed on the instrument workstation. Magnetic disk units of appropriate capacity
(in the order of 2 Gbytes) must be attached to this machine, and it is recommended to
provide mirroring (shadowing) of the magnetic disk areas, in order to allow fault-tolerant
operations.

The production of the observer’s tapes and archiving should be performed on a
centralized unique data server, in order not to interfere with instrument operations. The
data are moved from the instrument workstation to the data server over the workstations
network; all data storage units needed to temporarily and permanently store the
observations, and to produce the observers’ tapes are to be connected to the data server.
Such devices include magneto-optical disk (MOD) units for temporary storage, digital

audio tape (DAT) units for data distribution to observers, and high density optical disk
(OD) for the storage of archive data. Furthermore, appropriate magnetic disk space needs
to be available for the storage and handling of the catalogue of observations.

3.2.6.1 - Conceptual Scheme

‘When an acquisition is completed, data coming from the instrument are read by the
DTINP process and stored on magnetic disk in standard format (big endian integers).

The file containing the data is called xxxx_zz_tt. BLK, where xxxx_zz_tt is a name
tied to the observing time, defined later in this section. At the same time the ancillary
process for the specific instrument (DTAP) prepares a FITS header, reading from the
TDB the parameters related to the specific observation. The FITS header, called
xxxx_zz_tt.HDR, is also written on disk. When DTAP has completed this operation, a
message is sent to the DTOUT process to initiate operations.

DTOUT reads xxxx_zz_tt BLK and xxxx_zz_tt HDR, creates a single FITS file,
writes it to a magneto-optical disk standing on the MOD unit, and updates the
xxxx_zz_ii.FIL table, containing all files created during an observing session. The
xxxx_zz_ii part of the file name is tied to the session itself, and will be defined later in
this section.

The observer is entitled to receive all files generated during his/her observing
session. However, using the quick-look facility through the WSDISP process, he/she
may reject a specific file, if deemed not to be of interest. In this case, the entry related
to the file is flagged as "rejected"” in the xxxx_zz_ii.FIL file.

QuickLook

TAPEGEN Ohserver
tape (DAT)

Archi
f@ med;;em (0D)
l@ Catalogue

ARCGEN

of observations

Figure 5: Off-line science data archiviation

At the end of the observing session, two off-line processes are initialized (see fig.
5). ARCGEN reads the xxxx_zz_ii. FIL file, and dumps all created files, at the moment
stored on magneto-optical disks in the MOD unit, onto the archive media (optical disks?);

at the same time, it reads the headers of the FITS files and updates the catalogue of
observations.

TAPEGEN prepares the output media for the observer (DATS): it reads the
xxxx_zz_i1L.FIL file, and dumps from the magneto-optical disks in the MOD unit to the
digital audio tapes mounted on the DAT unit all files which have not been flagged by the
observer as "rejected”. The file containing all files created during an observing session,
xxxx_zz_ii.FIL, is also dumped on the output medium in the form of a FITS table.

3.2.6.2 - Files Naming Conventions

Each file in the data handling chain is uniquely identified by a file name, which is
built automatically from time, the system (instrument) name, and the session identifier.

The table containing all files created during an observing session is called
xxxx_zz_#.FIL, where xxxx is the system (instrument) name, zz is the current date
{expressed as yymmdd), and ii a sequential number identifying the session itself. As an
example, the table containing all files created on March 10th 1995 during the third session
on instrument CAM will be called CAM_950310_03.FIL. When stored on the observer’s
tape, such a table will be in FITS format, and its name will be CAM_950310_03.FTAB.

The final result of an observation is stored on a FITS file called xxxx_zz_tt.FITS,
and its temporary sections xxxx_zz_tt. BLK and xxxx_zz_tt.HDR. In this case, xxxx is
again the system (instrument) name, zz is the current date (expressed as yymmdd), and
tt is the time the observation was started, in the format hhmmss (GMT). Observation
start time is truncated to the nearest second. As an example, a file created on March 10th
1995 by an observation starting at 2:36:21.57 on instrument CAM will be called
CAM_950310_023622 FITS.

3.3 - TCS Definition Tables and Files

Inserting systems into WSS is a quite simple task, provided that systems
characteristics and behaviour, as well as WSS interactions with them, have been carefully
planned and defined. There are four steps which must be followed to make a system
known to WSS.

1) Define the system characteristics, along with the units contained in it, and
the parameters and commands which will be used by them. If applicable,
define a graphic layout for the system and the units, and define the panels
needed to interact with them.

2) Using the context sensitive table editor, create and fill in the tables contain-
ing the characteristics of each unit of the system.

3) Using the same editor create and fill in the files (<system>_<unit>.pcf and
<system>_<unit>.mccf) containing the characteristics of the parameters and
of the commands pertaining to each unit. If applicable create and fill in the
graphic panels (<system>.drw or <system>_<unit>.drw) and the interactive

panels (<system>.pan or <system>_<unit>.pan) for the system and/or the
units, using the graphic editor and the panel editor respectively.

4) Using the table editor add to the root file, system.scf, the definition and the
characteristics of the system.

After this last step, the first time WSS will be rebooted the new system will be
antomatically included in the internal tables, and made available for subsequent TCS
operations.

A detailed layout of definition tables is reported in Appendix B.

4 - USER INTERFACE

The User Interface (UIF) represents the only way by which the user can interact with
the computer system. Being so, it is important that this doorway is built using software
technologies that take in account both the efficiency of the system and the human ease
of interaction.

The TNG Workstation Software System is based over a Unix software and a
graphical workstation hardware platform. The use of a graphic device allows displaying
lots of informations organized in a clear manner, by the use of windows, icons and text.

4.1 - Window System

The window system is a peculiar piece of software that runs in background
controlling and managing all the interactions between the user and a series of virtual
terminals called "windows". There are several window systems on the market but only
one is supported by all of the major vendors: Xwindows release 11.x.

The choice of this window system if therefore mandatory, in order to provide a high
grade of portability to the applications among all hardware systems that can be used in
a long term project.

The window system provides a limited set of functions: graphic primitives, event
handling and windowing. In order to give the user a higher degree of control over these
functions we need a more sophisticated software called the "window manager". This
software uses the functions of the window system to build a coherent and robust interface
to the user. The market battle for window managers is more hot than that for the windows
systems. There are two major contenders: the OFS/Motif 1.x from Open Software
Foundation and Open Look from Sun Microsystems. The market numbers are similar
due to the great penetration of Sun in the USA universities, but in fact Open Look is
supported only by Sun and some clone-makers, while OSF/Motif is supported by all
other vendors (a third party support for Sun is also available).

Moreover, OSF/Motif follows the guidelines given by IBM/CUA standards, giving
to the user a consistent approach to the interface very close to that used in personal
computers with Windows 3.0 or OS/2 2.0.

So, our choice for the Galileo project User Interface standards is:

window system - Xwindows release 11.4 window manager - OSF/Motif 1.1

4.2 - Display organization

The TNG Control System User Interface provides all the components needed to use
interaction and graphic panels resembling the visual appearance and behavior of
real-world control instruments. This means that instrument manufacturers can build
interaction panels, using off-line WYSIWYG dedicated editors, completely by software,
giving an added flexibility and ease of upgrading.

The drawback of this situation is that the screen becomes rapidily cluttered by panels,
icons and graphical representations. But there are several solutions to this problem:

a) enlarge the physical screen;
b) squeeze panels;
c) add screens.

The better solution is to mix all the three above, using small, but meaningful, panels
over a set of two or more large screens, either on the same workstation, or on different
workstations or both.

In this way, a screen can be used to control the telescope system, while the others
can be dedicated to instruments; mixing different instrument control panels, if they are
simple, or giving full control over a screen to more sophisticated instruments.

The main window of the UIF is displayed always on the screen devoted to the
telescope control (see fig. 6), and is composed by three main parts:

a) the menu bar;
b) the command input line;
¢) the system messages area.

Using the menu bar, the user can select system commands such as "Load an
Interactive panel” or "Set the default unit”. Using the command line, the user can enter
commands in a terminal-like environment with line editing facilities. A scrolling area,
where all the entered commands are logged, allows stored lines to be retrieved and edited.
The system message area displays the control system outputs and messages like
"Command sent” or the like.

st) |

WX JER Jno- 1001- pMx § ooTFleb Tolmdy

az|Eu} ssaawesed ginwzy

)

didZy ﬁ»E ZYHA

185Mm01q J8jaWeled :iN/ONL =] mm.muﬂ rrre
puewon

[eued aapoelalu] L4IN/INL

J8%MOIG PUBLIIODOIDNW HIN/ONL jaued mapn aneg

_ mummoo.m_ ZW o s81awmesed puodag
b . omammm.mm_ ZWW 30 Jataweded 3s4)y

, mmnm.vm.mmﬁ_ ZV Jo Jarewesed punsag

panosxs Jok Jout [pa] INIZY NN ZYIA Puemmos (NYYTY O vigossts| zv o seewend w5
uLiery :3IN/9NL =

MaA Q0|9

_ abpapmouyoy . N Rt

| panoaxa 194 jou {gg] INIZY T LNN ZVIWA Putiwos :oNINYYM
-dn pote pue JUss MZY-+L N ZVINA PURIAN)

Buguiem IN/ONL |—] 4 ZOZOLVLFL 51 ZUVA+LNN=ZVINA 3T Bep

qndup pueseo)

INIZVTENL ZWHA

pajnoaxe jok jou [g§] IHIZYTTHOTZWILA huewmoDd (JHEyIy
pajuooxe 39A qou [pgl IMIZY THI ZUIA DUEwwoD :DHINMYH

Boj uLepy HIN/ONL “L_

Jasfy 195 malp Ul

(4IN) 8aeg1ayu] 850 ONL

4.3 - User Interaction

The user can interact with the system in two ways: by using the command line
provided in the main window or by using the interaction panels. These methods can be
freely mixed to ensure maximum easiness of use.

For example, commands can be entered either by typing their acronym and operands
on the command line, or by selecting the Command Browser dialog and navigating the
systermn/units tree until the desired command is found. Then a click on it will perform the
command.

Another way to interact with the system is by using graphic panels. They contain a
graphical representation of the components of the telescope system, including
instruments. If the user wants (o select an instrument all he/she has to do is to click over
the instrument icon: the interaction and graphic panels of the instrument will be displayed
on the screen, ready for use.

Graphic panels also use animation to show changes in the system parameters.
Temperature indicators change to red in an over-heating situation, or shutters icons move
to stop the light path. This all happens on the screen with no user intervention, directly
driven by changes in the internal database.

A description of the definition tables to be edited to build both the interaction panels
and the graphic panels is given in Appendix C. It must be noted that, as reported in
paragraph 2.2.1, these tables are generated interactively through the use of suitable
interactive editors dedicated to this task.

The help system is invoked by pressing the Help item in the menu bar of the main
window. It is an integrated system that makes use of hypertext-like links between
informations and a scrolling browser that the user can access to display help screens in
a non-linear way.

4.5 - Internal Structure

The UIF is an event driven process, this means that the main control over the
operations flow is given to user actions instead of program statements. An event driven
process must provide a set of functions that are asinchronously activated in response to
user’s actions like key or mouse buttons pressing. These functions are called ’event
handlers’ and are called ONLY if the user perform an action that requires them; the
internal mechanism to poll the event ports and to dispatch events to handlers is provided
by Xwindows.

UIF starts with an initialization part that builds the main window (displayed as
described before) and the dialog boxes, and activates all the connections with the VMEs
and the internal communication channel. Then the system will be in an idle status until
a command is entered via the logical input channels, at this point the correct event handler
will be called and the output of the command will be displayed via the logical output
channels (see fig. 7).

Logical Devices

Input Output

Message
System

Messuge
System

Interactive
Panels
Interactive
Graphic Panels
Panels -
Graphic
Command Panels
Line
System
Messages
Menu Area
Bar
VME
nefwork
Browsers

View
Panels

Dialog
Boxes

Figure 7: UIF logical input and output channels

User commands can be subdivided in two main sections: internal {(or system)
commands and external commands. The flow chart of commands input and parsing is
reported in fig. 8.

4.5.1 - Internal (system) Commands

Internal commands are those that modify the UIF behavior. For example, a typical
internal command is "Load a view panel”, it is not a command that will be forwarded to
the VMEs but act only at UIF level. A list of the internal commands is given below:

User
Input

Ask for
operands

Y

Clean and
Tokenize

Internal?

Agk for
operands

Check for
op. range

Execute
command

}

Send
commana

Figure 8: Command parsing flow-chart

SET

USER Set a new user name.

SYSTEM Set a default system.

UNIT Set a default unit.
LOAD

INTERACTIVE Load an interactive panel.
GRAPHIC Load a graphic panel.
COMMANDS Load the command browser.
PARAMETERS Load the parameter browser.

VIEW Load a view panel.

ALIAS Load an alias file,

DESKTOQOP Load a desktop configuration.
SAVE

VIEW Save a view panel.

ALIAS Save an alias file.

DESKTOP Save a desktop configuration.

EXIT Ekxit the system.

4.5.2 - External commands

External commands are dispatched by UIF to the correct destination VME via the
socket and network connections. An external command is issued by using any of the
available logical input channels such as the command line or an interactive panel.

A peculiar logical input channel is the command browser, that displays the complete
list of connected system. By clicking over one of them, the list of all the system’s units
are displayed, and via a subsequent click over a unit, a list of all the microcommands
related to the unit. At this time, clicking over a microcommand acronym will execute the
command, asking for operands, if needed.

4.5.3 - Telemetry Parameters Output

TM parameters (PCFs) are received in a continuous mode by the TMVER process
that stores them in the TDB. As stated before, the TBD is an instant snapshot of the
complete Telescope Control System (time resolution is of one second), and a process
that access the TDB for a PCF, has immediately (in one second steps) the value of the
requested PCE.

If the user wants to display the actual value of a PCEF, all he has to do is to request
the Parameters Browser and, in a manner similar to the Command Browser, select the
PCF to view. Its value will appear in the system messages area.

To obtain a continuous view of a set of PCFs, the user can build a View Panel using
an internal UIF interactive editor, or load a predefined one with the "Load View Panel"
internal command.

PCF values output is also performed by interactive and graphic panels. The graphic
panels can also display a PCF value using simple animation techniques.

5 - ACKNOWLEDGMENTS

Thanks are due to the colleagues of the TNG Project for many useful suggestion and
discussions, and for their help during the development of the software project. A special
acknowledgment goes to the colleagues of the ESO/TDE division for many useful
discussions about the general concepts of a telescope control system, and for many
fundamental suggestions about their practical implementation.

6 - REFERENCES

[1] GALILEO TELESCOPE - Phase A Report
M. Zambon ed., 1989
Astronomical Observatory of Padova

[2] A. Baruffolo, C. Bonoli, A. Ciani
"The TNG - command architecture"
TNG Technical Report n, 6, June 1991
Astronomical Observatory of Padova

Appendix A - Telescope Data Base Structure

THB Structures - Static section

/* wm=== TABLES HEADER ====

struct tabhead
{
int type:
int n_rec;
char acronym[NAMELEN] ;
char filename([Bl]:;
b;

*/

/*

/-k
/*

typedef struct tabhead TABHERAD;

struct db_tab

{
TABHEAD header;

int tabnum;
long dbcode;
int first:

int last;

1

type of table */
number of records */
acronym of table */
name of file */

/* header */

/* number of table */

/* database code */

/* position of the first record */
/* position of the last record */

typedef struct db_tab TABREC;

/* ==== STATIC TNG DATA BASE =~==

struct db static
{
int nrecscf;
int nrecuct;
int nrecpct;
int nrecmccE;
int nrecpan;
int ntables;

*/

char ws_sys [MAXSCF] [TNG_LENSYS}];

SCFREC scf [MAXSCF];
UCFREC ucf [MAXUCF];
PCFREC pcf [MAXPCF];

MCCFREC mccf [MAXMCCF];

PANREC pan[MAXPAN];

TABREC tables[MAXTAE];
HASHREC hash tab[HASHDIM]:

b

typedef struct db static DBSTAT;

TDB Structures - Dynamic section
/* ==== SCF RECORDS ==== */

struct scfdyn
{
int ws_id;

}i
typedef struct scfdyn SCFDYN;
/* ==== {CF RECORDS ==== */

struct ucfdyn
{
int ws_id;
int pid;
int qgid;
}:

typedef struct ucfdyn UCFDYN;

/* ==== PCF RECQRDS ==== ¥/

struct pcidyn
{
float eng _value;
float phis value;
int time:;
float set_value;
int set_time;
}i

typedef struct pcfdyn PCFDYN;
/* ==== MCCF RECORDS mmm= %/

struct mccfdyn
{
int nopers;
float opers[MAXCPER];
int code;
short vme spec;
short vme exr;
int time;
char counter;

};
typedef struct mccfdyn MCCFDYN;

struct tabdyn
{

int active;

};
typedef struct tabdyn TABDYN;
/% =mm== DYNAMIC TNG DATA BASE ==== */

strxuct db dyn
{
SCFDYN scf [MAXSCF]:;
UCFDYN ucf [MAXUCF] ;
PCFDYN pcf [MA¥PCF] ;
MCCFDYN ccf [MAXMCCF] ;
TABDYN tables [MAXTARB];

bs

typedef struct db_dyn DBDYN;

*/

TDB Structures - Microcommands queues

struct gitem
{

MCCFCOMM comm; /* VME microcommand block */

short emd([2}; /* Command return value and status */

long time; /% Sampling time */

int wE; /* Warning flag (1 if warn. message sent)} */
int ef; /* Brror flag (1 if err. message sent) #*/
int prev; /* Previous queued microcommand */

int next; /* Next queued microcommand #*/

char sys[TNG_LENSYS]; /* AB: sender system */
¥

typedef struct gitem QITEM;
/% ==== MICROCOMMANDS QUEUE =m== %/

Struct mc_gqueue

{

int free; /* Beginning of free list */
int first; /* Beginning of gueued microcommands list */
int last; /* End of gqueued microcommands list */

QITEM queue[MAXMCQD]; /* Microcommands queue */
bi

typedef struct mc queue MC QUEUE;
/* ==== MICROCOMMAND QUEUE ==== */
struct db_queues
éC_QUEUE mcqg [MAXVME*NQVME+1]; /* Segment of microcommands queues

}:

typedef struct db queues DBQUEUES;

Appendix B - Characteristics Files Layout
System Characteristics Table (system.scf)

int id; System identifier : progressive record number, is
the main key to retrieve records in the file

char nodename[44]; System description : system verbose description,
for display purposes only

char acronym[16]; System acronym : four characters acronym, MUST
begin with WS for workstations, VM for VME
systems, followed by two characters which specify
the system job (e.g. VMAZ = azimut control VME,
WSTC = telescope control ws)

long dbcode; Data Base code : filled in at run time by WSINIT
process during initialization. Used by WSS
processes to access data in TDB.

char arpa node[l6]; Internet address in dotted form

int byte_ sex; Swap bytes flag : true if data from system are
in little endian form

int send data; Send TM+Data flag : true if system sends science
data too
int tw _period; Telemetry refresh rate : rate (in seconds} at

which system must send changed telemetry data

int ncode; Number of code files to send : number of system
code file to download at initialization

char typel[4]; System type : three characters code to define
system grouping. TCS = telescope control system,
Ixy = Instrument xy control system.

int protection; Protection level : defines the access rights t
the system internal structure :

int havepanel; Interaction panel flag : true if an interaction
panel exists for the system

int Thavedrawing; Graphic panel flag : true if a graphic panel
exists for the system

int firstqueue; VME’s first queue index : filled in at run time by
WSINIT process during initialization

Unit Characteristics Table

int 4id; Unit identifier : progressive record number,
is the main key to retrieve records in the file

char unitnamef[44]; Unit description : unit verbose description,
for display purposes only

char acronym[16]; Unit acronym : three characters acronym to
identify the unit (e.g. MPA in VMAZ identifies the
Motor Power Amplifiers Unit in the Azimut control
VME system)

char path([44]; Pathname of the program : used by WSINIT to fork
the WSS processes. If empty no fork will be made

long dbcode; Data Base code : filled in at run time by WSINIT
process during initialization. Used by WSS
processes to access data in TDB

int protection; Protection level : defines the access rights to
the unit internal structure

int havepanel; Interaction panel flag : true if an interaction
panel exists for the unit)

int havedrawing; Graphic panel flag : true if a graphic panel
exists for the unit

Parameters Characteristic Table

int id;

int pecode;

char name[l6];

char descri44d];

char acronym[16];

long dbcode;

int type;

char format[5]:

char access[3]:

int wvme only;

int tm_flag;

int convert:;

long coeff[5];

int check limits;

long intr low limit;

Parameter identifier : progressive record number,
is the main key to retrieve records in the file.

Parameter code, used as parameter identifier by
VME software

Parameter name : parameter full name

Parameter description : parameter verbose
description, for display purposes only

Parameter acronym : six characters acronym, self
descriptive (e.g. MTLICUR = motor 1 current in the
Unit MPA in the Azimut control system)

Data Base code : filled in at run time by WSINIT
process during initialization. Used by WSS
processes to access data in TDB.

Parameter type : code to define parameter type
(e.g. 1 = Temperature, ...) T.B.D.

Format of data : four character data format tfxx,
where t = type of item (D = digital value, & =
analog walue), £ = format of item {I = integer,

¥ = float, B = bit field, 8 = string, C = command)
xx = number of bytes for I,F,S,C, of bits for B

Access mode : two characters access (e.g. RD =
Read Only, WR = Write Only, RW = Read Write)

VME only flag : true if the parameter is relevant
to the VME system only

Telemetry flag : true if the parameter must be
sent to the WSS via telemetry

Convert to physical units : true if datum must be
converted from engineering units to physical ones

Polynomial coefficients : array of coefficients
for the transformation

Check input limits : true if TMVER must check
the parameter against the following limits

Lower input limit ({(eng.units)

long intr high limit; Higher input limit {eng.units)

float low_alarm thr; Low threshold for ALARM

float high_alarm the; High threshold for ALARM
float low_attn_thr; Low thresheld for ATTENTION
float high attn_thr; High Threshold for ATTENTION

char phy unit[11];: Physical units

Microcommands

int

int

char
char

char

char

long

int

int

int

long win_exec time;

long max_exec time;

long

char opdescr[5] [44];

id;

mcode;

name[l6];
vine [16] ;

descr[441;

acronym[16];

dbcode;

queue;

waltflag;

task;

exec verify;

compl verify;

counter;

convert [5];

coeff[5]1([5];:

long min_walue[5];

Characteristics Table

Microcommand identifier : progressive record
number, is the main key to retrieve records in
the file.

Microcommand code,
by VME scoftware

used as microcommand identifier

Microcommand name microcommand full name

Destination VME acronym of the destination VME

Microcommand description : microcommand verbose
description, for display purposes only

Microcommand acronym :
for the command

six characters acronym

Data Base code : filled in at run time by WSINIT
process during initialization. Used by WSS
processes to access data in TDB.

Delayed queue : true if to be sent to delayed'queue
on VME

Wait for execution true if successive commands
must wait for its completion

Destination VME’s task : name of the VME task
(unit) the command 1s sent to

Verify execution
command execution

true if TMVER must verify
(submission)

Verify completion
command completion

true if TMVER must verify

Min. time extimated for execution
Max. time extimated for execution

Number of command operands

Convert to eng. units true if operand[i] to be
converted to engineering units

Interpolation matrix conversion matrix for

operand[i]

Operand description : operand full
description, display purpose only

Minimum value allowed for operand[i]

long max value[5];
long def value[5];

int wverify flag:

char tm[l6];:

long teolerance;

Maximum value allowed for operand([i]
Default value for operand[i]

Verify TM parameter : true if a parameter exists
which must be checked to verify command completion

T™M parameter to verify : full acronym of the -
parameter to be checked ({<system> <unit> <command>)

Fractional tolerance in thousandths for the
parameter to be checked

Appendix C - Panels Characteristic File Layout
Interactive Panels Characteristics Table

int id; Element identifier : progressive record number,
is the main key to retrieve records in the file.

int type; Element type : type of widget to be used;
1 = label, 2 = text output, 3 = slider,
4 = led bar, 5 = push button, 6 = status
{see mode), 7 = analog display, 8 = text input
{(operand for 2 command)
int x; Start x position : upper left x position of widget
int y; Start y position : upper left y position of widget
int mode; Status mode : if type = 6, 0 = color changing led,
1 = changing text
char acronym[16]; Panel acronym : widget acronym (6 characters)
long dbcode; Data Base code : filled in at run time by WSINIT

process during initialization. Used by WSS
processes to access data in TDB.

float threshold; Color or text change threshold : refers to
parameter value; status widget changes if this
threshold is trespassed

char text[44]; Text to display : refers to labels

char pcf[16]; PCF to visualize : full acronym of parameter to
be used with the widget (<system> <unit> <par>)

char mecef[16]; MCCF to activate : command to be activated if
type is 3, 5 or 8

char oper[20]; Fixed operands : to be used with mcef (if
applicable)
char stat[2][44]; Color or text to display : contains the two

colors or the two strings to be used with a
widget of type 6; if pcf value threshold the
first element is used, otherwise the second one

